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Sayre's equation is modified so as to include two kinds of atom, one kind of atom having known 
positions. Starting with one initial set of phases, the agreement between structure factors as calculated 
by Sayre's equation and the observed structure factors is systematically improved by rotating the phase 
angles of each of the individual structure factors through a discrete set of values; only one structure 
factor is rotated at a time and each is given the phase angle that produces the lowest value of the 
disagreement factor. This algorithm is shown to give the correct structure if some a priori knowledge 
is introduced into the initial set of phases. 

Introduction 

Sayre's (1952) equation" Fh=Oh~h, Fh, Fh_ h, gives a 
relation between structure factors for an equal-atom 
structure. Since Sayre's first application of this equa- 
tion to phase determination no further attempts to use 
the equation have been reported. Instead, it was the 
related statistical formulae Uh = N(Uh, Uh-h, ) (Cochran, 
1953; Hughes, 1953) and E h= N1/2(Eh,Eh_h ,) (Haupt- 
man & Karle, 1954) that found successful application 
in a number of direct methods (e.g. Woolfson, 1957; 
Karle & Karle, 1963) and in iteration procedures for 
phase refinement (Karle & Karle, 1964). However, 
such a statistical method lacks a reliable internal 
consistency criterion (Karle, 1969). 

In this paper we propose an algorithm for phase 
refinement, using the original exact form of Sayre's 
equation for which a reliable consistency index can be 
defined. In the algorithm the phase angle of each 
structure factor in turn is rotated over a discrete set of 
angles until it gives the lowest value of this consistency 
index. It may be considered as a reciprocal-space ana- 
logue of the real-space procedure of Bhuiya & Stanley 
(1963). 

In order to be able to apply Sayre's equation to real 
structures some modifications have to be made to the 
equation. 

Sayre's equation 

We derive Sayre's equation, with the function 0h 
written out in terms of the atomic scattering factors, 
starting from the Fourier coefficient of a squared struc- 
ture" 

co oo N 

Fh, Fh-h, = ~ ~. fn(h') exp (2nih' .  r n) 
h ' = - - ~  h ' = - c o  n =  1 

N 

x ~ fm ( h - h ' )  exp ( 2 n / ( h - h ' ) .  rm) 
m = l  

N N 

= ~ ~ exp(2nih ,  rm) 
n = l  m = l  

c<~ 

x ~ f n ( h ' ) f m ( h - h ' ) e x p { 2 n i h ' . ( r n - r m ) }  

N N 

= ~ ~ gnm (h) exp (2nih. rm) (1) 
n = l  m = l  

with grim (h) = 0 if n ¢ m and gnm fill) =gin (h) if n = m .  

Then 
oo 

gm (h)= ~ fm (h')fm ( h - h ' ) .  (2) 
h ' ~  - -co  

If all atoms are equal, then the subscript m can be 
omitted and equation (1) written as 

c~ N 

Z FwFh-w = g ~ )  ~. exp (2nih. rn) 
h ' =  - -c~  n =  1 

_ g O 0  N 
f(h) ~ f(h) exp(2nih, rn) 

n = l  

7 f ( h ' ) f ( h -  h') 
~--- h" F h ,  ( 3 )  

f(h) 

which is Sayre's equation in the desired form.* 
If a structure contains P equal light atoms together 

with N-P heavy atoms with known positions, then the 
summation (1) can be separated into two parts, one 
involving a summation over the light atoms, the other 
over the heavy atoms: 

N 

~ Fh, Fh-h, = ~ gin(h) exp (2nih. rm) 
h '  m =  1 

P 

= ~.. gL(h) exp (2nih. rm) 
m = l  

* It must be noted that if series-termination goes together 
with a considerable degree of regularity in the structure, 
gn,,~(h) in equation (1), where 

enra(h) = ~ fn(h')fm(h-h') exp {2nih'. (rn- rm)}, 
h' 

is not equal to zero if m :/: n and thus remains a function of the 
atomic positions. Consequently, Sayre's equation (3) is not 
strictly valid in this case. 
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in which 
g L ( h )  

g~(h) 

f ' (h)  

N 

+ ~ g~(h) exp (2z~ih. rm) 
m = P + l  

- -  g L ( h )  E L  + G ~  
fL(h) 

-- gL(h) (F L + F~) - -  gL(h) " G M 
f (h) fz-N f+ 

1 1 _m _ ~  
= ?# Fh- 0)-'h' + u,, (4) 

is the scattering factor of a squared light atom 

is the scattering factor of a squared heavy atom 

is the scattering factor of a light atom 

is the contribution of the light atoms to the 
structure factor 

F ~  is the contribution of the heavy atoms to the 
structure factor 

G~ t is the contribution of the heavy atoms to the 
Fourier coefficient of the squared structure 

fL(h) fL(h) 
0~ is equal to - gL(h) 2;fL(h')/L(h- h') 

h' 

Equation (4) can be rewritten as 

r,=o  Fh, F,_,, +(Fy-OkCf)  . 
h" 

As G~ is equal to the self-convolution of F~, that is, as 

o f =  F Fg_,, 
h" 

we obtain: 

Fh=O~ ~ Fa, Fh_h,+(F~--O~ ~ F~F~_h, ). (5) 
h' h' 
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Fig. 1. The sign-reversing procedure applied to a one-dimen- 
sional structure. The 'structure' with random signs (left), 
and with signs after iteration (right). 

If the heavy atoms are equal too, then 
N 

a ~ = g ~ ( h )  ~. exp (2rcih. r,,3 
m = P + l  

_ gM(h ) u 
fM(h ) ~ fM(h) exp (2z~ih. r ~  

m = P + l  

1 
- 0~ t r y ,  (6) 

in which 
f ~  is the scattering factor of a heavy atom, 

f~(h)  f~(h)  
OhM -- gM(~ -- ~, fM(h')fM(h_ h')" 

h" 

Then equation (5) finally becomes 

rn=O ~ ~, rh, eh_ h, + r ~ ,  ( 1 - 0 ~ ' ~  h, OHM/" (7) 
In equations (5) and (7) the known heavy-atom con- 
tribution is separated from the part containing the 
unknown phases. 

Equation (5) can also be derived by writing down 
Sayre's equation for the light-atom part of the structure 
(Appendix). 

Algorithm 

The problem is to find an algorithm which, starting 
with one initial set of phases, searches for those phases 
that match the structure factors as calculated by equa- 
tions (3) or (7) to the observed structure factors as 
closely as possible. For the non-centric case Sayre's 
equation (3), for computational reasons without the 
function 0n, consists of two parts: 

Ah= K Fh, Fh-h, cos (#, + #_h,) 
h" 

Bh= ~ Fh, Fh_ h, sin ((po +(P~--h') (8) 
h' 

with a consistency index defined as: 

1 [ ]Fh[ COS ~O__Ah) 2 R -  
I 

+ \  Oh s i n # - - B h  (9) 

in which ~0 ° belongs to the initial set of phases. 
We propose to improve the phases by the following 

algorithm: The initial phases are first rounded off to 
n .  360 ° 

one of the values - - - - ,  with n=0(1) nmx - 1. Exe- 
/ '/max 

cute the summations (8) and calculate R. Next take one 
structure factor Fx, and let its phase angle ~0p run through 

n .  360 ° 
the values ~0°+ ~ - - ,  with n =  1(1) nmax- 1. Calcu- 

n m a x  

late for each value of n the corresponding value of 
Ah(n) and Bh(n ) with the aid of the formulae: 

Ah(n ) = Ah(n =0) + 2 ]Fp[ [Fh_Pl 

A C 27A - 4 
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+ 2 IFpI IF,,+rl 

x {cos (  9°+360nnmax 9°+e)-c°s(~o°-~°°+r)} ' (10) 

Bh(n)=B~(n=0)+2 IFpI IFh-PI 

x {sin (~°+  360n +9° -e )  - s i n ( ~ ° ° + f p ° - r ) } n m a x  

- 2  IFrl IF,,+rl 
× {sin (~o ° + 360n _nmax ~p°+r)-sin (~o°-~0°+r)},(10) 

only if P # h -  P, and h # 0. 
Also 
Ah(n) =A,(n=0) 

+[Fe[2{c°s ( 2~°° + 2 360n ] - c°s (2 fp°) } n m . x  ! 

+2lFr l  IFh+rl 

x {c°s(c°°+360n-~°°+r)-c°s(~°-~°l+r)} ' ( l l ) n m a x  

Bh(n) = B~,(n = O) 

+ ]Fx'] 2{ sin ( 2~°° + 2 360n I - sin (2~°°) } n m a x  ! 

-21Frl IFh+rl 
x {sin (~°°+ 360n--~°g+e) - s i n ( q p - ¢ ° + r ' ) } n m a x  (11) 

if P = h -  P and h # 0. The factors of 2 do not occur in 
the second terms because here b' and h - h '  simultane- 
ously become equal to P. Calculate for every n the 
corresponding values of the disagreement factors R(n).  

360n 
Let Fr finally assume the phase angle ~° r + - -  corre- 

nmax 
sponding to the lowest value of R(n).  

This procedure is repeated for all structure factors, 
taking the larger ones first. This causes the consistency 
index to decrease gradually. After a number of cycles 
every change in phase angle will increase R. The process 
then ends. 

For the non-centric case we have tested this procedure 
for a one-dimensional structure. An example will be 
given. 

If the reciprocal net contains mirror planes or rota- 
tion axes, then there are equivalent reflexions, the 
phases of which have to be changed simultaneously, 
taking into account the phase relations. Equations (10) 
and (11) then contain correspondingly more terms. 

For a centrosymmetric structure* we define 

FC-- ~i~, Fh, Fh , 

* Cochran & Douglas (1955) proposed a similar algorithm 
for systematic sign changing, but their criterion - maximaliza- 
tion of the sum of triple products - appeared to be insufficiently 
stringent. 

U (a) 

o A_ AA Ao 
pseudo 

U ...... 
(b) 

(c) 

/ L  __ _ / L : L _ A / L / L _  
0" 180" 
(d) 

Fig. 2. Interpretat ion of  a false structure. (a) Patterson func- 
t ion; (b) false structure, R=0 .22 ;  (c) m in imum function, 
R = 0" 17; (d) correct structure, R = 0-016. 

't, A Jt. / 
(.,,) 

@ 

(e) 

Fig.3. Centrosymmetric structure treated as acentric. The 
'structure' deduced with (a) correct phases, R=0.013; 
(b) correct phases rounded off to discrete values 0 °, 45 °, 
. . .  ;(c) random phases, R=0.839; (d) cycle 1, R=0.364; 
(e) Cycle 8, R=0.286. 
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Fig. 4. R as a function of the phase angle q~l, of one reflexion Fe. 
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and the disagreement factor (9) reduces to 

Fh ¢ - IFh l  
R = ~ h , - 0 ] - -  Fb • 

With nmax=2, which corresponds to increments in 
phase angle of 180 °, equation (10) is greatly simplified: 

Fh(n= 1)=Fh(n=O)-4FpFh-p-4FpFh+p. (12) 

When the vector P in the reciprocal net is related by 
symmetry to a vector P'  then Fp, will change sign if Fp 
changes sign. If it does: 

Fh(n= 1) = Fh(n=O)-4FpFh_p 
-4FpFh+ P -  4Fp,F~_r,-4Fv,F~+p, . (13) 

In the event of b.igher symmetry, equation (13) contains 
correspondingly more terms. However, care must be 
taken not to subtract invariant terms, such as F~(h = 0), 
F~,(h=2P) or  FpFh_  P (if h - P = P ' ,  where P'  is related 
to P by symmetry). The latter will occur if the vector h 
is in a mirror plane or if h coincides with a rotation 
axis. 

Program 

The algorithm was programmed in Algol for triclinic, 
monoclinic and orthorhombic centrosymmetric space 
groups, using formula (7). To test the applicability to 
non-centrosymmetric space groups also an acentric 
one-dimensional program was devised. 

One can give a list with signs to the program. If the 
sign of a certain structure factor is not in the list, then 
this structure factor will be given the sign of the heavy- 

atom contribution (or of the known light-atom con- 
tribution, as the case may be). If there is no contribution 
of known atoms to a particular structure factor and 
its sign is not in the list, then it is given a sign chosen 
at random. 

The program offers the possibility of sharpening the 
observed structure factors. The influence of sharpening 
on 0~ and OhM is then accounted for. 

It is also possible to change the signs of only those 
structure factors for which Fh/Oh exceeds a certain 
value; this value can gradually be lowered. 

As the computing time depends linearly on the 
number of equations the number of equations used in 
the process may be restricted too. 

Examples 

1. Starting with random signs 
A one-dimensional example (Sayre, 1952), is shown 

in Fig. 1. Starting with 30 different combinations of 
signs, 10 of them resulted in the correct structure. The 
other sets stopped in subsidiary minima. Some of the 
results are shown in Fig. 1. As can be seen from Fig. 1, 
the process tends to create structures with small nega- 
tive areas, but certainly some discrete peaks. 

In trying to find a method for restarting the sign- 
reversing procedure after the deadlock in a subsidiary 
minimum, we notice a resemblance to atomic distances 
between the correct structure and a false one. In order 
to find a relation between the two structures, we tried 
to imagine how a false structure could be built up if 

0 
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l 
0 

) 

Y > 

© 

( 

(a) 

Y > 
0.5 0 0.5 

@ 
© 

(b) 

Fig. 5. Glycollic acid, Fourier sections at z =  0.25, with (a) signs obtained from the positions of two oxygen atoms. R (Sayre)= 
0.470; (b) signs resulting from the sign-reversing procedure. R (Sayre)= 0.083. 

A C 27A - 4* 
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we start from the correct one, keeping in mind that: 
(i) the correct and a false structure both correspond 

to the same Patterson function; 
(ii) a false structure corresponds to a solution of 

Sayre's equation, which means that it will contain a 
number of equal peaks. 

If we build up a false structure by superimposing the 
correct structure on its image, obtained by inverting the 
correct one through one of its pseudo-centres, we shall 
fulfil more or less conditions (i) and (ii). In tiffs way 
false Patterson peaks are introduced, but not many of 
them if the pseudo-centre is pronounced enough. As 
Patterson (1949) has pointed out pseudo-centres in a 
structure are situated relative to the centre of symmetry 
at points halfway along the Patterson vectors. The 
pseudo-centres are more like real centres the higher the 
corresponding Patterson peaks. In Fig.2 we demon- 
strate how we find the correct structure by searching 
for an appropriate pseudo-centre in the false structure, 
by reversing the above procedure. Fig. 2(a) shows the 
Patterson function with one of its highest peaks at 
u; Fig.2(b) shows the false structure (Fig. 1, R=0.22) 
with a pseudo-centre at ½u. In Fig.2(e) the pseudo- 
centre of Fig.2(b) is changed into a real centre by 
taking the minimum of the values of the calculated 
electron density (R=0.22) at corresponding points to 
the left and right of the pseudo-centre. The minimum 
function thus determined has a close resemblance to 
the real structure [Fig.2(d)]. The Fourier transform 
of this minimum function resulted in new signs (R = 0.17 
in Sayre's equation). After applying the sign-reversing 

procedure to this set R decreased to 0.0147, indicating 
that the correct structure had been found. 

In tiffs example, given in Fig.2, the appropriate 
pseudo-centre was found by trial and error. So, if we 
are going to include the above procedure in the sign- 
reversing algorithm we should have to systematize the 
detection of the appropriate pseudo-centres in false 
structures. We believe that the foregoing illustrates 
the nature of a false structure. 

2. Starting with random phases 
Using the same one-dimensional centrosymmetric 

example with the origin shifted away from the centre 
of symmetry, it was shown that, provided we start 
with phases chosen at random from the discrete set 
360n/8, the method again produced the more-or-less 
correct set in one third of the cases. An example is 
shown in Fig. 3. Apparently increments in phase angle 
of 45 ° are accurate enough to make the algorithm 
work. 

It also appeared that in the majority of cases R, as a 
function of the phase angle of one reflexion, has one 
minimum and one maximum 180 ° apart (Fig. 4). It is 
noteworthy that after the first cycle no great changes 
in phase angle were observed. 

3. Signs obtained from direct methods 
Glycollic acid (Pijper, 1971) has been solved by the 

correlation method of de Vries (1965). The method 
resulted in 8 sets of signs; the correct set was found 
after inspection of the Fourier syntheses. We applied 

o 1 

a sin 
2 

a sii3@ 

2 

b o 1 

N 

N C 

N 

PC 

o 0 

~ C I  (~H20 

Ca) (6) 

Fig. 6. Guanine hydrochloride monohydrate. Electron density projection along the c axis (a) With signs obtained from the chlor- 
ine contribution. R (Sayre) = 0.25; (b) with signs after the sign-reversing procedure. R (Sayre) = 0.18. 
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our sign-reversing procedure to these eight sets. Before 
the refinement the R's were high with no indications 
for the correct set. After the refinement the correct set 
was indicated by the lowest R value (Table 1). 

Table 1. Glycollic acid 
Eight sets of signs, obtained by the correlation method of 
de Vries (1965), subjected to the sign-reversing procedure. 

Initial R Number Final R 
Set (x 100) of cycles (x 100) 
1 51 11 28 
2 47 8 29 
3 51 10 17 
4 43 10 26 
5 50 11 23 
6 51 9 29 
7 51 9 24 
8 46 9 27 

correct set 

4. Signs obtained from the contribution of  some light 
atoms in the equal-atom case 

Before the structure of glycollic acid was found by 
direct methods much searching of the Patterson func- 
tion had been done, resulting only in the finding of the 
positions of two oxygen atoms (out of a total of 10 
atoms). We applied the sign-reversing procedure to the 
signs obtained from these two atoms; it resulted in the 
correct structure. In Fig. 5 a relevant section through 
the three-dimensional Fourier shows the structure 
before and after refinement. 

Another example is methylmalonic acid (Derissen, 
1970). From the Patterson function two possible con- 
figurations were found, which differed only in the 
position of the methyl group. One configuration did 
refine by the least-squares method and gave the correct 
structure; the other configuration did not refine. We 
applied the sign-reversing procedure to the two sets of 
signs obtained from the atomic positions in the two 
configurations. In both cases the same correct solution 
resulted. 

5. Signs obtained from the contributions of  heavy atoms 
Applying the sign-reversing procedure to guanine 

hydrochloride monohydrate (Broomhead, 1951), we 
found that this procedure gave the correct structure 
only if sharpened amplitudes were used (Fig. 6). This 
is explained by the fact that the contributions of the 
heavy atoms to the structure factors are greater for the 
higher-order reflexions. 

We thank Professor A.F.Peerdeman for valuable 
discussions and suggestions. We are grateful to Mr D. 
Kaas for writing the computer program. 

A P P E N D I X  

Equation (5) is identical to Sayre's equation for the 
light-atom part of the structure alone, as will now be 
shown. 

Sayre's equation for the light-atom part is 

or 

L__ L L L F h- 0~, ~h, Fh, Fh_h, 

F h - Fh M =  0 k ~h, ( F h t -  F~t)  (Fh_ ht -- F~_  h, ) 

O~(Xh, Fh,Fh_h, m = --2~,vFh, Fh_ h, 
M M + ~,h, Fh, Fh- h')" 

M ~,h, Fh, Fh_h, is the Fourier coefficient of the product of 
the electron density corresponding to the complete 
structure, and the electron density corresponding to 
the heavy-atom structure. However, tkis product is 
equal to the squared heavy-atom structure with Fourier 
coefficient ~h, m M F h, Fh--h, • 

So 
- - -  ~ h '  F h ' F h - h '  • ~.lt, Fh, F~ h'- M M 

Therefore 
M z F, M F h -  f h =On (~,w vFh-h, --'2,h'Fh'Fh-h ') 

which is identical with equation (5). 
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